Simultaneous unsupervised and supervised learning of cognitive functions in biologically plausible spiking neural networks

نویسندگان

  • Trevor Bekolay
  • Carter Kolbeck
  • Chris Eliasmith
چکیده

We present a novel learning rule for learning transformations of sophisticated neural representations in a biologically plausible manner. We show that the rule, which uses only information available locally to a synapse in a spiking network, can learn to transmit and bind semantic pointers. Semantic pointers have previously been used to build Spaun, which is currently the world’s largest functional brain model (Eliasmith et al., 2012). Two operations commonly performed by Spaun are semantic pointer binding and transmission. It has not yet been shown how the binding and transmission operations can be learned. The learning rule combines a previously proposed supervised learning rule and a novel spiking form of the BCM unsupervised learning rule. We show that spiking BCM increases sparsity of connection weights at the cost of increased signal transmission error. We also demonstrate that the combined learning rule can learn transformations as well as the supervised rule and the offline optimization used previously. We also demonstrate that the combined learning rule is more robust to changes in parameters and leads to better outcomes in higher dimensional spaces, which is critical for explaining cognitive performance on diverse tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evolutionary Strategy for Supervised Training of Biologically Plausible Neural Networks

Spiking neural networks represent a more plausible model of real biological neurons. In contrast to the classical artificial neural networks, which adopt a high abstraction of real neurons, spiking neurons consider time as an important feature for information representation and processing. However, good training algorithms are needed for better exploitation of these realistic models. Most exist...

متن کامل

Learning in large-scale spiking neural networks

Learning is central to the exploration of intelligence. Psychology and machine learning provide high-level explanations of how rational agents learn. Neuroscience provides lowlevel descriptions of how the brain changes as a result of learning. This thesis attempts to bridge the gap between these two levels of description by solving problems using machine learning ideas, implemented in biologica...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Convolutional Spike Timing Dependent Plasticity based Feature Learning in Spiking Neural Networks

Brain-inspired learning models attempt to mimic the cortical architecture and computations performed in the neurons and synapses constituting the human brain to achieve its efficiency in cognitive tasks. In this work, we present convolutional spike timing dependent plasticity based feature learning with biologically plausible leaky-integrate-and-fire neurons in Spiking Neural Networks (SNNs). W...

متن کامل

Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP

We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013